Description
Genann is a minimal, well-tested library for training and using feedforward artificial neural networks (ANN) in C. Its primary focus is on being simple, fast, reliable, and hackable. It achieves this by providing only the necessary functions and little extra.
Genann alternatives and similar libraries
Based on the "Artificial Intelligence" category.
Alternatively, view Genann alternatives based on common mentions on social networks and blogs.
-
PyTorch
Tensors and Dynamic neural networks in Python with strong GPU acceleration -
CNTK
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit -
Eclipse Deeplearning4J
Suite of tools for deploying and training deep learning models using the JVM. Highlights include model import for keras, tensorflow, and onnx/pytorch, a modular and tiny c++ library for running math code and a java based math library on top of the core c++ library. Also includes samediff: a pytorch/tensorflow like library for running deep learning using automatic differentiation. -
tiny-cnn
header only, dependency-free deep learning framework in C++14 -
frugally-deep
Header-only library for using Keras (TensorFlow) models in C++. -
Tulip Indicators
Technical Analysis Indicator Function Library in C -
BayesOpt
BayesOpt: A toolbox for bayesian optimization, experimental design and stochastic bandits. -
Native System Automation
Native cross-platform system automation -
Modern C++ framework for Symbolic Regression
Modern C++ framework for symbolic regression that uses genetic programming to explore a hypothesis space of possible mathematical expression. -
Tulip Cell
TulipCell is an Excel add-in providing 100+ technical analysis indicators. -
Evolving Objects
A template-based, ANSI-C++ evolutionary computation library which helps you to write your own stochastic optimization algorithms insanely fast. [LGPL]
TestGPT | Generating meaningful tests for busy devs
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of Genann or a related project?
README
Genann
Genann is a minimal, well-tested library for training and using feedforward artificial neural networks (ANN) in C. Its primary focus is on being simple, fast, reliable, and hackable. It achieves this by providing only the necessary functions and little extra.
Features
- C99 with no dependencies.
- Contained in a single source code and header file.
- Simple.
- Fast and thread-safe.
- Easily extendible.
- Implements backpropagation training.
- Compatible with alternative training methods (classic optimization, genetic algorithms, etc)
- Includes examples and test suite.
- Released under the zlib license - free for nearly any use.
Building
Genann is self-contained in two files: genann.c
and genann.h
. To use Genann, simply add those two files to your project.
Example Code
Four example programs are included with the source code.
- [
example1.c
](./example1.c) - Trains an ANN on the XOR function using backpropagation. - [
example2.c
](./example2.c) - Trains an ANN on the XOR function using random search. - [
example3.c
](./example3.c) - Loads and runs an ANN from a file. - [
example4.c
](./example4.c) - Trains an ANN on the IRIS data-set using backpropagation.
Quick Example
We create an ANN taking 2 inputs, having 1 layer of 3 hidden neurons, and providing 2 outputs. It has the following structure:
[NN Example Structure](./doc/e1.png)
We then train it on a set of labeled data using backpropagation and ask it to predict on a test data point:
#include "genann.h"
/* Not shown, loading your training and test data. */
double **training_data_input, **training_data_output, **test_data_input;
/* New network with 2 inputs,
* 1 hidden layer of 3 neurons each,
* and 2 outputs. */
genann *ann = genann_init(2, 1, 3, 2);
/* Learn on the training set. */
for (i = 0; i < 300; ++i) {
for (j = 0; j < 100; ++j)
genann_train(ann, training_data_input[j], training_data_output[j], 0.1);
}
/* Run the network and see what it predicts. */
double const *prediction = genann_run(ann, test_data_input[0]);
printf("Output for the first test data point is: %f, %f\n", prediction[0], prediction[1]);
genann_free(ann);
This example is to show API usage, it is not showing good machine learning techniques. In a real application you would likely want to learn on the test data in a random order. You would also want to monitor the learning to prevent over-fitting.
Usage
Creating and Freeing ANNs
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs);
genann *genann_copy(genann const *ann);
void genann_free(genann *ann);
Creating a new ANN is done with the genann_init()
function. Its arguments
are the number of inputs, the number of hidden layers, the number of neurons in
each hidden layer, and the number of outputs. It returns a genann
struct pointer.
Calling genann_copy()
will create a deep-copy of an existing genann
struct.
Call genann_free()
when you're finished with an ANN returned by genann_init()
.
Training ANNs
void genann_train(genann const *ann, double const *inputs,
double const *desired_outputs, double learning_rate);
genann_train()
will preform one update using standard backpropogation. It
should be called by passing in an array of inputs, an array of expected outputs,
and a learning rate. See example1.c for an example of learning with
backpropogation.
A primary design goal of Genann was to store all the network weights in one
contigious block of memory. This makes it easy and efficient to train the
network weights using direct-search numeric optimization algorthims,
such as Hill Climbing,
the Genetic Algorithm, Simulated
Annealing, etc.
These methods can be used by searching on the ANN's weights directly.
Every genann
struct contains the members int total_weights;
and
double *weight;
. *weight
points to an array of total_weights
size which contains all weights used by the ANN. See example2.c for
an example of training using random hill climbing search.
Saving and Loading ANNs
genann *genann_read(FILE *in);
void genann_write(genann const *ann, FILE *out);
Genann provides the genann_read()
and genann_write()
functions for loading or saving an ANN in a text-based format.
Evaluating
double const *genann_run(genann const *ann, double const *inputs);
Call genann_run()
on a trained ANN to run a feed-forward pass on a given set of inputs. genann_run()
will provide a pointer to the array of predicted outputs (of ann->outputs
length).
Hints
- All functions start with
genann_
. - The code is simple. Dig in and change things.
Extra Resources
The comp.ai.neural-nets FAQ is an excellent resource for an introduction to artificial neural networks.
If you need an even smaller neural network library, check out the excellent single-hidden-layer library tinn.
If you're looking for a heavier, more opinionated neural network library in C, I recommend the FANN library. Another good library is Peter van Rossum's Lightweight Neural Network, which despite its name, is heavier and has more features than Genann.
*Note that all licence references and agreements mentioned in the Genann README section above
are relevant to that project's source code only.