Changelog History
-
v1.1 Changes
April 23, 2019- Namespace'd include directory inside a csv/ folder
- ✂ Removed unnecessary shared_ptr in Dialects
- Switched to std::string_view for keys in CSV rows - Now requiring C++17
- Switched to using robin_hood::unordered_flat_map
- ✂ Removed std::mutex, using std::atomic instead
-
v1.0 Changes
April 20, 2019CSV for Modern C++
Highlights
- Header-only library
- Fast, asynchronous, multi-threaded processing using:
- Requires C++11
- MIT License
Table of Contents
- Reading CSV files
- Dialects
- Configuring Custom Dialects
- Multi-character Delimiters
- Ignoring Columns
- No Header?
- Dealing with Empty Rows
- Reading first N rows
- Performance Benchmark
- Writing CSV files
- Contributing
- License
Reading CSV files
Simply include reader.hpp and you're good to go.
#include \<reader.hpp\>
📜 To start parsing CSV files, create a
csv::Reader
object and call.read(filename)
.csv::Reader foo; foo.read("test.csv");
🏗 This
.read
method is non-blocking. The reader spawns multiple threads to tokenize the file stream and build a "list of dictionaries". While the reader is doing it's thing, you can start post-processing the rows it has parsed so far using this iterator pattern:while(foo.busy()) { if (foo.has\_row()) { auto row = foo.next\_row(); // Each row is a robin\_map (https://github.com/Tessil/robin-map)auto foo = row["foo"] // You can use it just like an std::unordered\_mapauto bar = row["bar"]; // do something } }
If instead you'd like to wait for all the rows to get processed, you can call
.rows()
which is a convenience method that executes the above while loopauto rows = foo.rows(); // blocks until the CSV is fully processedfor (auto& row : rows) { // Example: [{"foo": "1", "bar": "2"}, {"foo": "3", "bar": "4"}, ...] auto foo = row["foo"]; // do something}
Dialects
This csv library comes with three standard dialects:
Name Description excel The excel dialect defines the usual properties of an Excel-generated CSV file excel_tab The excel_tab dialect defines the usual properties of an Excel-generated TAB-delimited file unix The unix dialect defines the usual properties of a CSV file generated on UNIX systems, i.e. using '\n' as line terminator and quoting all fields 🔧 Configuring Custom Dialects
🔧 Custom dialects can be constructed with
.configure_dialect(...)
csv::Reader csv; csv.configure\_dialect("my fancy dialect") .delimiter("") .quote\_character('"') .double\_quote(true) .skip\_initial\_space(false) .trim\_characters(' ', '\t') .ignore\_columns("foo", "bar") .header(true) .skip\_empty\_rows(true); csv.read("foo.csv");for (auto& row : csv.rows()) { // do something}
Property Data Type Description 0️⃣ delimiter std::string
0️⃣ quote_character char
0️⃣ double_quote bool
🎉 skip_initial_space bool
0️⃣ trim_characters std::vector<char>
0️⃣ ignore_columns std::vector<std::string>
0️⃣ header bool
0️⃣ column_names std::vector<std::string>
skip_empty_rows bool
specifies how empty rows should be interpreted. If this is set to true, empty rows are skipped. Default = false
🔧 The line terminator is
'\n'
by default. I use std::getline and handle stripping out'\r'
from line endings. So, for now, this is not configurable in custom dialects.Multi-character Delimiters
🌲 Consider this strange, messed up log file:
[Thread ID] :: [Log Level] :: [Log Message] :: {Timestamp} 04 :: INFO :: Hello World :: 1555164718 02 :: DEBUG :: Warning! Foo has happened :: 1555463132
🔧 To parse this file, simply configure a new dialect that splits on "::" and trims whitespace, braces, and bracket characters.
csv::reader csv; csv.configure\_dialect("my strange dialect") .delimiter("::") .trim\_characters(' ', '[', ']', '{', '}'); csv.read("test.csv");for (auto& row : csv.rows()) { auto thread\_id = row["Thread ID"]; // "04"auto log\_level = row["Log Level"]; // "INFO"auto message = row["Log Message"]; // "Hello World"// do something}
Ignoring Columns
Consider the following CSV. Let's say you don't care about the columns
age
andgender
. Here, you can use.ignore_columns
and provide a list of columns to ignore.name, age, gender, email, department Mark Johnson, 50, M, [email protected], BA John Stevenson, 35, M, [email protected], IT Jane Barkley, 25, F, [email protected], MGT
🔧 You can configure the dialect to ignore these columns like so:
csv::reader csv; csv.configure\_dialect("ignore meh and fez") .delimiter(", ") .ignore\_columns("age", "gender"); csv.read("test.csv");auto rows = csv.rows();// Your rows are:// [{"name": "Mark Johnson", "email": "[email protected]", "department": "BA"},// {"name": "John Stevenson", "email": "[email protected]", "department": "IT"},// {"name": "Jane Barkley", "email": "[email protected]", "department": "MGT"}]
No Header?
Sometimes you have CSV files with no header row:
9 52 1 52 91 0 91 135 0 135 174 0 174 218 0 218 260 0 260 301 0 301 341 0 341 383 0 ...
📜 If you want to prevent the reader from parsing the first row as a header, simply:
- Set
.header
to false Provide a list of column names with
.column_names(...)
csv.configure_dialect("no headers") .header(false) .column_names("foo", "bar", "baz");
The CSV rows will now look like this:
[{"foo": "9", "bar": "52", "baz": "1"}, {"foo": "52", "bar": "91", "baz": "0"}, ...]
If
.column_names
is not called, then the reader simply generates dictionary keys like so:[{"0": "9", "1": "52", "2": "1"}, {"0": "52", "1": "91", "2": "0"}, ...]
Dealing with Empty Rows
Sometimes you have to deal with a CSV file that has empty lines; either in the middle or at the end of the file:
a,b,c 1,2,3 4,5,6 10,11,12
0️⃣ Here's how this get's parsed by default:
csv::Reader csv; csv.read("inputs/empty\_lines.csv");auto rows = csv.rows();// [{"a": 1, "b": 2, "c": 3}, {"a": "", "b": "", "c": ""}, {"a": "4", "b": "5", "c": "6"}, {"a": "", ...}]
If you don't care for these empty rows, simply call
.skip_empty_rows(true)
csv::Reader csv; csv.configure\_dialect() .skip\_empty\_rows(true); csv.read("inputs/empty\_lines.csv");auto rows = csv.rows();// [{"a": 1, "b": 2, "c": 3}, {"a": "4", "b": "5", "c": "6"}, {"a": "10", "b": "11", "c": "12"}]
Reading first N rows
📜 If you know exactly how many rows to parse, you can help out the reader by using the
.read(filename, num_rows)
overloaded method. This saves the reader from trying to figure out the number of lines in the CSV file. You can use this method to parse the first N rows of the file instead of parsing all of it.csv::Reader foo; foo.read("bar.csv", 1000);auto rows = foo.rows();
Note: Do not provide num_rows greater than the actual number of rows in the file - The reader will loop forever till the end of time.
🐎 Performance Benchmark
// benchmark.cppvoid parse(const std::string& filename) { csv::Reader foo; foo.read(filename); std::vector\<csv::robin\_map\<std::string, std::string\>\> rows; while (foo.busy()) { if (foo.ready()) { auto row = foo.next\_row(); rows.push\_back(row); } } } $ g++ -pthread -std=c++11 -O3 -Iinclude/ -o test benchmark.cpp $ time ./test
✅ Each test is run 30 times on an Intel(R) Core(TM) i7-6650-U @ 2.20 GHz CPU.
Here are the average-case execution times:
Dataset File Size Rows Cols Time Demographic Statistics By Zip Code 27 KB 237 46 0.026s Simple 3-column CSV 14.1 MB 761,817 3 0.523s Majestic Million 77.7 MB 1,000,000 12 2.232s Crimes 2001 - Present 1.50 GB 6,846,406 22 32.411s Writing CSV files
Simply include writer.hpp and you're good to go.
#include \<writer.hpp\>
To start writing CSV files, create a
csv::Writer
object and provide a filename:csv::Writer foo("test.csv");
🔧 Constructing a writer spawns a worker thread that is ready to start writing rows. Using
.configure_dialect
, configure the dialect to be used by the writer. This is where you can specify the column names:foo.configure\_dialect() .delimiter(", ") .column\_names("a", "b", "c");
Now it's time to write rows. You can do this in multiple ways:
foo.write\_row("1", "2", "3"); // parameter packingfoo.write\_row({"4", "5", "6"}); // std::vectorfoo.write\_row(std::map\<std::string, std::string\>{ // std::map {"a", "7"}, {"b", "8"}, {"c", "9"} }); foo.write\_row(std::unordered\_map\<std::string, std::string\>{ // std::unordered\_map {"a", "7"}, {"b", "8"}, {"c", "9"} }); foo.write\_row(csv::robin\_map\<std::string, std::string\>{ // robin\_map {"a", "7"}, {"b", "8"}, {"c", "9"} });
👷 Finally, once you're done writing rows, call
.done()
to stop the worker thread and close the file stream.foo.close();
✅ Each test is run 30 times on an Intel(R) Core(TM) i7-6650-U @ 2.20 GHz CPU.
Here are the average-case execution times:
Contributing
Contributions are welcome, have a look at the CONTRIBUTING.md document for more information.
License
The project is available under the MIT license.
-
v0.9
April 17, 2019