Popularity
8.0
Stable
Activity
7.8
Declining
2,417
210
457

Code Quality Rank: L4
Programming language: C++
Tags: Concurrency    

Thrust alternatives and similar libraries

Based on the "Concurrency" category

Do you think we are missing an alternative of Thrust or a related project?

Add another 'Concurrency' Library

README

Thrust: Code at the speed of light

Thrust is a C++ parallel programming library which resembles the C++ Standard Library. Thrust's high-level interface greatly enhances programmer productivity while enabling performance portability between GPUs and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP) facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!

Thrust is distributed with the CUDA Toolkit in addition to GitHub.

Examples

Thrust is best explained through examples. The following source code generates random numbers serially and then transfers them to a parallel device where they are sorted.

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <algorithm>
#include <cstdlib>

int main(void)
{
  // generate 32M random numbers serially
  thrust::host_vector<int> h_vec(32 << 20);
  std::generate(h_vec.begin(), h_vec.end(), rand);

  // transfer data to the device
  thrust::device_vector<int> d_vec = h_vec;

  // sort data on the device (846M keys per second on GeForce GTX 480)
  thrust::sort(d_vec.begin(), d_vec.end());

  // transfer data back to host
  thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

  return 0;
}

This code sample computes the sum of 100 random numbers in parallel:

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <algorithm>
#include <cstdlib>

int main(void)
{
  // generate random data serially
  thrust::host_vector<int> h_vec(100);
  std::generate(h_vec.begin(), h_vec.end(), rand);

  // transfer to device and compute sum
  thrust::device_vector<int> d_vec = h_vec;
  int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0, thrust::plus<int>());
  return 0;
}

Refer to the Quick Start Guide page for further information and examples.

Development process

For information on development process and branching, see [this document](doc/branching.md).