Description
A short, selfcontained, and easytouse neural net implementation for C++. It includes the neural net implementation and a Matrix class for basic linear algebra operations. This project is mostly for learning purposes, but preliminary testing results over the MNIST dataset show some promise.
NN++ alternatives and similar libraries
Based on the "Machine Learning" category.
Alternatively, view NN++ alternatives based on common mentions on social networks and blogs.

xgboost
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow 
mxnet
DISCONTINUED. Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutationaware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more 
Caffe2
DISCONTINUED. A lightweight, modular, and scalable deep learning framework. [Apache2] website 
vowpal_wabbit
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning. 
catboost
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU. 
RNNLIB
RNNLIB is a recurrent neural network library for sequence learning problems. Forked from Alex Graves work http://sourceforge.net/projects/rnnl/ 
OpenHotspot
DISCONTINUED. OpenHotspot is a machine learning, crime analysis framework written in C++11.
InfluxDB  Power RealTime Data Analytics at Scale
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of NN++ or a related project?
Popular Comparisons
README
NN++
A short, selfcontained, and easytouse neural net implementation for C++. It includes the neural net implementation and a Matrix class for basic linear algebra operations. This project is mostly for learning purposes, but preliminary testing results over the MNIST dataset show some promise.
Getting Started
These instructions will get you a copy of the net up and running on your local machine for development and testing purposes.
Prerequisites
Any compiler that can handle C++11.
Installing
 Download
Matrix.hpp
,Matrix.cpp
,NeuralNet.hpp
, andNeuralNet.cpp
and place them in your project's working directory.  Include the headers in your main driver program (e.g.
main.cpp
).
#include "Matrix.hpp"
#include "NeuralNet.hpp"
NOTE: It is not required to #include "Matrix.hpp"
since it is included within NeuralNet.hpp
. However it is probably better to do so for clarity and safety in case you plan on using Matrix objects in your code (and you probably will if you use NeuralNet).
Example Code
The Matrix Class
First you need to know how to use the Matrix class. Matrix objects are basically 2Dvectors with builtin linear algebra operations.
Matrix Initialization
Matrix A; // Initializes a 0x0 matrix.
Matrix B(2,2) // Initializes a 2x2 matrix with all zeros. Values are doubles.
Matrix C(2,1) // Initializes a 2x1 matrix.
Element Access
To access/modify a value in a matrix, use operator()
, NOT operator[]
:
B(0,0) = 1; B(0,1) = 2; B(1,0) = 3; B(1,1) = 4; // [1 2]
// [3 4]
C(0,0) = 1; C(1,0) = 2; // [1]
// [2]
Matrix TermbyTerm Addition/Subtraction/Multiplication
// Commutative property is supported for addition
Matrix D = B+B; // D = [2 4]
[6 8]
Matrix E = BB; // E = [0 0]
[0 0]
// Commutative property is supported for multiplication
Matrix F = B*B // F = [1 4]
[9 16]
// Mismatching matrix dimensions in termbyterm operations
// is illegal and a MatrixDimensionsMismatch exception will be thrown.
Matrix G = B+C; // Throws MatrixDimensionsMismatch()
Matrix G = BC; // Throws MatrixDimensionsMismatch()
Matrix G = B*C; // Throws MatrixDimensionsMismatch()
Matrix and Scalars
// Commutative property is supported for addition
Matrix BplusTwo = B+2; // (== 2+B) BplusTwo = [3 4]
[5 6]
Matrix CminusTwo = C2; // CminusTwo = [1]
[ 0]
Matrix TwominusB = 2C; // TwominusB = [ 1]
[ 0]
// Commutative property is supported for multiplication
Matrix BtimesThree = B*3; // (== 3*B) BtimesThree = [3 6]
[9 12]
Matrix Multiplication (Dot Product)
Matrix BB = B.dot(B); // BB = [ 7 10]
[15 22]
Matrix BC = B.dot(C); // BC = [ 5]
[11]
// Mismatching the number of columns in the lefthandside matrix
// with the number of rows in the righthandside matrix is illegal
// A MatrixInnderDimensionsMismatch exception will be thrown.
Matrix CB = C.dot(B); // Throws MatrixInnderDimensionsMismatch()
Matrix Transpose
Matrix B_T = B.T(); // B_T = [1 3]
[2 4]
Matrix C_T = C.T(); // C_T = [1 2]
An Example of Populating a 4x3 Matrix
int m = 4;
int n = 3;
Matrix mtrx(m,n);
int count = 1;
for (int i = 0; i < mtrx.getNumOfRows(); ++i) {
for (int j = 0; j < mtrx.getNumOfCols(); ++j) {
mtrx(i,j) = count;
++count;
}
}
This will result with mtrx
==
[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]
The NeuralNet Class
Neural Net Initialization (The Parameters)
When initialized, a net takes in five parameters:
 Number of input nodes.
 Number of nodes per hidden layer.
 Number of output nodes.
 Number of hidden layers.
 The learning rate.
NeuralNet NN(4, 3, 1, 10, 0.1);
This particular neural net has 4 input nodes, 1 hidden layer with 3 nodes, 10 output node, and has a learning rate of 0.1.
New neural nets' weights are initialized with values drawn from a normal distribution centered at 0, with standard deviation that is equal to 1/sqrt(number_of_inputs_to_nodes_in_next_layer)
. In other words, small negative and positive values that are proportional to the size of their previous layer.
A Training Cycle
Once the net is initialized, it is ready to do work.
ONE training cycle == one feed forward and one back propagation with weight adjustments.
To train one cycle, the input data must be parsed into a Matrix object with dimensions: 1xnumber_of_input_nodes
(1x4 in our case), and the target output must be parsed into a Matrix object with dimensions: 1xnumber_of_output_nodes
(1x10 in our case).
Matrix input(1,4);
input(0,0) = 0.3;
input(0,1) = 0.1;
input(0,2) = 0.2;
input(0,3) = 0.8;
Matrix targetOutput(1,1);
target(0,0) = 0.5;
target(0,1) = 0.3;
.
.
.
target(0,9) = 0.23; // Obviously, matrices should be populated using
// some parser and not manualy like this.
Then, simply execute the training cycle on the data as follows:
NN.trainingCycle(input, targetOutput);
Repeate the process over all training instances.
Querying the Net
Once the training phase is complete, you can query it as follows:
(Technically speaking, you can query it right after initialization).
Parse the query into a Matrix like parsed the training instance:
Matrix query(1,2);
input(0,0) = 0.5;
input(0,1) = 0.2;
input(0,2) = 0.3;
input(0,3) = 0.4;
Query the net and catch the result:
Matrix prediction = NN.queryNet(query); // Will return a 1x10 Matrix object with net's prediction
AND THAT'S IT!
TODO
 Add
array
,std::vector
, andstd::initializer_list
constructors to the Matrix class  Either improve on or replace my Matrix class for better/faster performance
 Add multiple epoch learning with early stopping.
Authors
 Gil Dekel  Initial implementation  stagadish
See also the list of contributors who participated in this project.
License
This project is licensed under the MIT License  see the LICENSE.md file for details
*Note that all licence references and agreements mentioned in the NN++ README section above
are relevant to that project's source code only.