All Versions
Latest Version
Avg Release Cycle
20 days
Latest Release
552 days ago

Changelog History
Page 4

  • v0.14.2 Changes

    April 17, 2019

    ๐Ÿ†• New features

    ๐Ÿ’ฅ Breaking changes

    • ๐Ÿ”„ Change output feature indices separator (: to ;) in the CatboostEvaluation class.
  • v0.14.1 Changes

    April 13, 2019

    ๐Ÿ’ฅ Breaking changes

    • ๐Ÿ”„ Changed default value for --counter-calc-method option to SkipTest

    ๐Ÿ†• New features:

    • ๐Ÿ“‡ Add guid to trained models. You can access it in Python using get_metadata function, for example print catboost_model.get_metadata()['model_guid']

    ๐Ÿ› Bug fixes and other changes:

    • Compatibility with glibc 2.12
    • ๐Ÿ‘Œ Improved embedded documentation
    • ๐Ÿ‘Œ Improved warning and error messages
  • v0.14.0 Changes

    April 09, 2019

    ๐Ÿ†• New features:

    ๐Ÿ‘ GPU training now supports several tree learning strategies, selectable with grow_policy parameter. Possible values:

    • SymmetricTree -- The tree is built level by level until max_depth is reached. On each iteration, all leaves from the last tree level will be split with the same condition. The resulting tree structure will always be symmetric.
    • Depthwise -- The tree is built level by level until max_depth is reached. On each iteration, all non-terminal leaves from the last tree level will be split. Each leaf is split by condition with the best loss improvement.
    • Lossguide -- The tree is built leaf by leaf until max_leaves limit is reached. On each iteration, non-terminal leaf with best loss improvement will be split.

    Note: grow policies Depthwise and Lossguide currently support only training and prediction modes. They do not support model analysis (like feature importances and SHAP values) and saving to different model formats like CoreML, ONNX, and JSON.

    • The new grow policies support several new parameters:
      0๏ธโƒฃ max_leaves -- Maximum leaf count in the resulting tree, default 31. Used only for Lossguide grow policy. Warning: It is not recommended to set this parameter greater than 64, as this can significantly slow down training.
      min_data_in_leaf -- Minimum number of training samples per leaf, default 1. CatBoost will not search for new splits in leaves with sample count less than min_data_in_leaf. This option is available for Lossguide and Depthwise grow policies only.

    Note: the new types of trees will be at least 10x slower in prediction than default symmetric trees.

    ๐Ÿ‘ GPU training also supports several score functions, that might give your model a boost in quality. Use parameter score_function to experiment with them.

    Now you can use quantization with more than 255 borders and one_hot_max_size > 255 in CPU training.

    ๐Ÿ†• New features in Python package:

    • It is now possible to use save_borders() function to write borders to a file after training.
    • Functions predict, predict_proba, staged_predict, and staged_predict_proba now support applying a model to a single object, in addition to usual data matrices.


    • ๐Ÿ“œ Impressive speedups for sparse datsets. Will depend on the dataset, but will be at least 2--3 times for sparse data.

    ๐Ÿ’ฅ Breaking changes:

    • ๐Ÿ“ฆ Python-package class attributes don't raise exceptions now. Attributes return None if not initialized.
    • โšก๏ธ Starting from 0.13 we have new feature importances for ranking modes. The new algorithm for feature importances shows how much features contribute to the optimized loss function. They are also signed as opposed to feature importances for not ranking modes which are non negative. This importances are expensive to calculate, thus we decided to not calculate them by default during training starting from 0.14. You need to calculate them after training.
  • v0.13.1 Changes

    March 20, 2019

    ๐Ÿ”„ Changes:

    • ๐Ÿ›  Fixed a bug in shap values that was introduced in v0.13