Popularity
8.8
Stable
Activity
9.9
Stable
8,127
191
1,190

Description

CatBoost is a machine learning method based on gradient boosting over decision trees.

Main advantages of CatBoost: * Categorical features support * Reduced overfitting * User-friendly API interface * Fast model inference

Programming language: Python
License: Apache License 2.0
Latest version: v0.24.3

catboost alternatives and similar libraries

Based on the "Machine Learning" category.
Alternatively, view catboost alternatives based on common mentions on social networks and blogs.

Do you think we are missing an alternative of catboost or a related project?

Add another 'Machine Learning' Library

README

Website | Documentation | Tutorials | Installation | Release Notes

GitHub license PyPI version Conda Version GitHub issues Telegram Twitter

CatBoost is a machine learning method based on gradient boosting over decision trees.

Main advantages of CatBoost:

Get Started and Documentation

All CatBoost documentation is available here.

Install CatBoost by following the guide for the

Next you may want to investigate:

If you cannot open documentation in your browser try adding yastatic.net and yastat.net to the list of allowed domains in your privacy badger.

Catboost models in production

If you want to evaluate Catboost model in your application read model api documentation.

Questions and bug reports

Help to Make CatBoost Better

  • Check out open problems and help wanted issues to see what can be improved, or open an issue if you want something.
  • Add your stories and experience to [Awesome CatBoost](AWESOME.md).
  • To contribute to CatBoost you need to first read CLA text and add to your pull request, that you agree to the terms of the CLA. More information can be found in CONTRIBUTING.md
  • Instructions for contributors can be found here.

News

Latest news are published on twitter.

Reference Paper

Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev, Liudmila Ostroumova Prokhorenkova, Aleksandr Vorobev "Fighting biases with dynamic boosting". arXiv:1706.09516, 2017.

Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin "CatBoost: gradient boosting with categorical features support". Workshop on ML Systems at NIPS 2017.

License

© YANDEX LLC, 2017-2022. Licensed under the Apache License, Version 2.0. See LICENSE file for more details.


*Note that all licence references and agreements mentioned in the catboost README section above are relevant to that project's source code only.